1,734 research outputs found

    Hybrid Coding Technique for Pulse Detection in an Optical Time Domain Reflectometer

    Get PDF
    The paper introduces a novel hybrid coding technique for improved pulse detection in an optical time domain reflectometer. The hybrid schemes combines Simplex codes with signal averaging to articulate a very sophisticated coding technique that considerably reduces the processing time to extract specified coding gains in comparison to the existing techniques. The paper quantifies the coding gain of the hybrid scheme mathematically and provide simulative results in direct agreement with the theoretical performance. Furthermore, the hybrid scheme has been tested on our self-developed OTDR

    Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models

    Full text link
    The steady growth of graph data from social networks has resulted in wide-spread research in finding solutions to the influence maximization problem. In this paper, we propose a holistic solution to the influence maximization (IM) problem. (1) We introduce an opinion-cum-interaction (OI) model that closely mirrors the real-world scenarios. Under the OI model, we introduce a novel problem of Maximizing the Effective Opinion (MEO) of influenced users. We prove that the MEO problem is NP-hard and cannot be approximated within a constant ratio unless P=NP. (2) We propose a heuristic algorithm OSIM to efficiently solve the MEO problem. To better explain the OSIM heuristic, we first introduce EaSyIM - the opinion-oblivious version of OSIM, a scalable algorithm capable of running within practical compute times on commodity hardware. In addition to serving as a fundamental building block for OSIM, EaSyIM is capable of addressing the scalability aspect - memory consumption and running time, of the IM problem as well. Empirically, our algorithms are capable of maintaining the deviation in the spread always within 5% of the best known methods in the literature. In addition, our experiments show that both OSIM and EaSyIM are effective, efficient, scalable and significantly enhance the ability to analyze real datasets.Comment: ACM SIGMOD Conference 2016, 18 pages, 29 figure

    Cancer biomarker development from basic science to clinical practice

    Get PDF
    The amount of published literature on biomarkers has exponentially increased over the last two decades. Cancer biomarkers are molecules that are either part of tumour cells or secreted by tumour cells. Biomarkers can be used for diagnosing cancer (tumour versus normal and differentiation of subtypes), prognosticating patients (progression free survival and overall survival) and predicting response to therapy. However, very few biomarkers are currently used in clinical practice compared to the unprecedented discovery rate. Some of the examples are: carcino-embryonic antigen (CEA) for colon cancer; prostate specific antigen (PSA) for prostate; and estrogen receptor (ER), progesterone receptor (PR) and HER2 for breast cancer. Cancer biomarkers passes through a series of phases before they are used in clinical practice. First phase in biomarker development is identification of biomarkers which involve discovery, demonstration and qualification. This is followed by validation phase, which includes verification, prioritisation and initial validation. More large-scale and outcome-oriented validation studies expedite the clinical translation of biomarkers by providing a strong ‘evidence base’. The final phase in biomarker development is the routine clinical use of biomarker. In summary, careful identification of biomarkers and then validation in well-designed retrospective and prospective studies is a systematic strategy for developing clinically useful biomarkers

    Prospects of microalgal biodiesel production in Pakistan – a review

    Get PDF
    Biodiesel is an alternative, renewable, biodegradable and environmentally friendly fuel for transportation, with properties like petroleum-derived diesel, and can be used directly in a compression ignition engine without any modifications. The world's fossil fuel and crude oil reserves are going to dry up in the next few decades, but, contrariwise, an attractive, high quality, readily available and economically extractable oil from microalgae is a substitute feedstock to produce alternative biodiesel fuel for the transportation sector in the future. Microalgae have a higher biomass productivity (tons/hectare/year) and lipid yield (kg/kg of algal biomass) as compared to vegetable oil crops. To overcome the problem of energy deficiency in developing countries, like Pakistan, and boost their economic growth, alternative fuels are proving very important for environment-friendly and sustainable development, especially in the last few decades. Different research studies on microalgae cultivation, characterization of microalgae oil (lipids), and evaluations of its socio-economic feasibility to produce renewable biodiesel have been conducted in the past in Pakistan for its future prospects. This review paper includes the overall summary and compilation of the microalgae research conducted in Pakistan on biodiesel production and includes the algal biodiesel production cost analysis. The studies showed promising results for harnessing microalgae and using its lipids to produce biodiesel with favourable properties that were comparable to the conventional diesel in Pakistan. The information related to the microalgae research will help stakeholders and governmental organisations working in the renewable energy sector to consider its cultivation on a large scale, using waste water as a feedstock to produce biodiesel to meet the target set by the Government of Pakistan of using 10% blended biodiesel by the year 2025 in Pakistan

    Measurement of NO2 indoor and outdoor concentrations in selected public schools of Lahore using passive sampler

    Get PDF
    Higher levels of NO2 are a danger to human health especially for children. A seven day study was carried to find out the ambient concentrations of NO2in 27 schools of Lahore with the help of passive samplers. In each school three sites were selected, viz: laboratory, corridor and outdoors. After 7 days exposure the tubes were subjected to spectrophotometric analysis. Results showed that the maximum values measured in laboratory, outdoor and corridors were 376µg/m3 , 222µg/m3 and 77µg/m3 . Minimum values for laboratory, outdoor and corridors were 10µg/m3 , 20µg/m3 and 8µg/m3 . Factors affecting these values were laboratory activities and proximity to main roads. These values were significantly higher than the standard values defined by EPA. Therefore children in schools were at risk of developing health complications

    Mild pyrolysis of manually pressed and liquid nitrogen treated de‐lipid cake of nannochloropsis oculata for bioenergy utilisation

    Get PDF
    Due to the damaging impacts of continued use of fossil fuels, there is global interest in developing sustainable biofuel production to reduce society's dependency on carbon based energy resources. Microalgae cultivation can contribute to CO2 fixation from the atmosphere, while simultaneously producing a source of lipids from the biomass for third generation biodiesel fuel production. The residual de‐lipid cake left after lipid extraction can be treated with thermochemical techniques (such as mild pyrolysis) to produce solid biochar as an end product with a higher energy density and lower moisture content offering advantages for downstream processing or carbon sequestration. De‐lipid cake was produced by solvent extraction from Nannochloropsis oculata that had been manually pressed and/or treated with liquid nitrogen (LN2). The de‐lipid cake was thermally treated at 200 °C or 300 °C under partial vacuum in an oxygen free atmosphere. The solid biochar produced had a reduced moisture content (MC) resulting in a mass reduction of 25 and 66 wt % of de‐lipid cake without LN2 and treatment at 200 °C and 300 °C, respectively, while with LN2 treated cake the mass reduction was 23 and 67 wt % at 200 °C and 300 °C. The higher heating value of the control sample (without any manual pressing or LN2 treatment) was 23.35 MJ kg−1, while for the control sample it was enhanced to 26.82 and 30.56 MJ kg−1 with treatment at 200 °C and 300 °C, respectively. With LN2 treated samples with pressing the HHV was 21.98 MJ kg−1 for control sample as compared to 25.90 and 28.72 MJ kg−1 at 200 and 300 °C respectively, where the lower values were observed because of the lipid removal. The measured gas pressure developed, likely due to the production of CO2 and CH4 as major gases,, was 0.19 and 0.53 bars without LN2 treatment samples, while it was 0.13 and 0.58 bars with LN2. The torrefaction process (mild pyrolysis) energy analysis showed that the ER (energy ratio) without LN2 treatment sample with 0.485 at 200 °C was the highest and the lowest 0.407 energy ratio was found with LN2 treated sample at the higher treatment temperature (300 °C)

    Organizational Learning and ERP Post-implementation Phase: A Situated Learning Perspective

    Get PDF
    In this paper, we interpret the sequence of events and issues that led to the ERP failure during the post-implementation phase in a large IT service management company in Australia. For this purpose, we used theoretical frameworks from the domain of organizational and situated learning. We found that several factors created severe complexities and failure at the post-implementation phase of the ERP: 1) staff’s lack of understanding of the SAP-ERP, 2 the interconnection of ERP with business processes, 3) a disconnection between the training that the vendor provided and actual work practices, and 4) management’s and staff’s misunderstanding about the adequacy of the training and staff engagement. Our findings suggest that the theoretical space that situated learning theories provide can enhance our understanding about post-implementation issues

    FROM REPRESENTATIVE TO TRANSFORMATIVE USER PARTICIPATION – A CASE STUDY OF PUBLIC HEALTHCARE DIGITALIZATION

    Get PDF
    User participation in IS implementation is a core topic for the IS community. While most of our current participation theories emerged in the 1990s and 2000s, recent developments such as the emergence of large half-built products and the increased emphasis on digital transformation necessitate revisiting current understanding of participation. User participation is not anymore about merely representing the organization\u27s domain knowledge - what we call representative participation. Users participating in modern IS implementation projects need to possess additional types of knowledge and skills. This includes knowledge about the products, knowledge about the intended transformation, and leadership skills, to name a few. We investigate this emerging type of user participation - what we call transformative participation through a case study of an IS implementation project within healthcare. We discuss the knowledge and skills needed to function as transformative users as well as the challenges faced by these users

    Exposure to NO2 in occupational built environments in urban centre in Lahore

    Get PDF
    Increased economic growth, urbanisation and substantial rise in automobile vehicles has contributed towards the elevated levels of air pollution in major cities in Pakistan. Aone week study was conducted by using passive samplers to assess NO2 concentration in occupational built environments at two most congested and populated sites of Lahore. Both sites were locatedon the busy roads of Lahore. At Site-I the highest concentration was in outdoors followed by corridor and indoor. While at Site II all the sampling location wereindoors and level were comparable to that of outdoor levelsat Site I. The results suggest the likely contribution of ambient sources in exposure to indoor NO2 in educational and other occupational built environments in urban centres
    corecore